Modeling Net Ecosystem Carbon Exchange of Alpine Grasslands with a Satellite-Driven Model
نویسندگان
چکیده
Estimate of net ecosystem carbon exchange (NEE) between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP) and ecosystem respiration (Reco) has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model.
منابع مشابه
Management, not climate, controls net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland
In Switzerland, the traditional three-stage grassland farming system consists of grazed or cut grasslands along a gradient from lowland to alpine elevations. We measured carbon dioxide (CO2) fluxes at three grassland sites (400, 1000, 2000 m elevation) and estimated carbon sequestration for two years (2006 and 2007). Grasslands at higher elevations (>1000 m), managed at lower intensities, exhib...
متن کاملSeasonal and Inter-Annual Variations in Carbon Dioxide Exchange over an Alpine Grassland in the Eastern Qinghai-Tibetan Plateau
This work analyzed carbon dioxide exchange and its controlling factors over an alpine grassland on the eastern Qinghai-Tibetan Plateau. The main results show that air temperature and photosynthetically active radiation are two dominant factors controlling daily gross primary production. Soil temperature and soil water content are the main factors controlling ecosystem respiration. Canopy photos...
متن کاملGrasslands of the World: Diversity, Management and Conservation
Features provide a comprehensive global overview of extent and diversity of grasslands. Analyzes how humans shaped grasslands through millennia of use and which role they play in present-day agriculture. Quantifies the role of grasslands as biodiversity hotspots as well as the drivers threatening these. Evaluates the ecosystem services grasslands provide e.g. in terms of soil protection and car...
متن کاملDifferent responses of ecosystem carbon exchange to warming in three types of alpine grassland on the central Qinghai–Tibetan Plateau
Climate is a driver of terrestrial ecosystem carbon exchange, which is an important product of ecosystem function. The Qinghai-Tibetan Plateau has recently been subjected to a marked increase in temperature as a consequence of global warming. To explore the effects of warming on carbon exchange in grassland ecosystems, we conducted a whole-year warming experiment between 2012 and 2014 using ope...
متن کاملChanges in topsoil carbon stock in the Tibetan grasslands
Climate warming is likely inducing carbon loss from soils of northern ecosystems, but little evidence comes from large-scale observations. Here we used data from a repeated soil survey and remote sensing vegetation index to explore changes in soil organic carbon (SOC) stock on the Tibetan Plateau during the past two decades. Our results showed that SOC stock in the top 30 cm depth in alpine gra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015